123 research outputs found

    Solving Examination Timetabling Problem using Partial Exam Assignment with Great Deluge Algorithm

    Get PDF
    Constructing a quality solution for the examination timetable problem is a difficult task. This paper presents a partial exam assignment approach with great deluge algorithm as the improvement mechanism in order to generate good quality timetable. In this approach, exams are ordered based on graph heuristics and only selected exams (partial exams) are scheduled first and then improved using great deluge algorithm. The entire process continues until all of the exams have been scheduled. We implement the proposed technique on the Toronto benchmark datasets. Experimental results indicate that in all problem instances, this proposed method outperforms traditional great deluge algorithm and when comparing with the state-of-the-art approaches, our approach produces competitive solution for all instances, with some cases outperform other reported result

    RESP: Relay suitability-based routing protocol for video streaming in vehicular Ad Hoc Networks

    Get PDF
    Video streaming in Vehicular Ad Hoc Networks (VANETs) is a fundamental requirement for a roadside emergency and smart video surveillance services. However, vehicles moving at a high speed usually create unstable wireless links that drop video frames qualities. In a high-density network, network collision between vehicles is another obstacle in improving the scalability of unicast routing protocols. In this paper, the RElay Suitability-based Routing Protocol (RESP) which makes a routing decision based on the link stability measurement was proposed for an uninterrupted video streaming. The RESP estimates the geographic advancement and link stability of a vehicle towards its destination only in the small region. To ensure the reliability while extending the scalability of routing, the relay suitability metric integrates the packet delay, collision dropping, link stability, and the Expected Transmission Count (ETX) in the weighted division algorithm, and selects a high-quality forwarding node for video streaming. The experimental results demonstrated the proposed RESP outperformed the link Lifetime-aware Beacon-less Routing Protocol (LBRP) and other traditional geographical streaming protocols in providing a high packet delivery ratio and packet delay with various network densities, and proved the scalability support of RESP for video streaming

    The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution

    Get PDF
    This paper presents a real-world, capacitated examination timetabling problem from Universiti Malaysia Pahang (UMP), Malaysia. The problem has constraints which have not been modelled before, these being the distance between examination rooms and splitting exams across several rooms. These constraints provide additional challenges in defining a suitable model and in developing a constructive heuristic. One of the contributions of this paper is to formally define this real-world problem. A further contribution is the constructive heuristic that is able to produce good quality solutions for the problem, which are superior to the solutions that are produced using the university’s current software. Moreover, our method adheres to all hard constraints which the current systems fails to do

    A novel green antenna phase-shift system with data acquisition boards

    Get PDF
    A novel green phase shifter system is proposed in this research. The system is developed by a combination of reconfigurable beam steering antennas and data acquisition (DAQ) boards. A combination of two reconfigurable beam steering antennas, located side-by-side, forms a spatial configuration structure with a fabricated ‘green’ element plank of rice husk placed in between. The concept of a spatial configuration technique has been ‘mutated’ by shifting the structure of spiral feed line and aperture slots of first beam steering antenna by as much as 45 ◦ . The PIN diode switches connected to the DAQ boards enable the intelligent capability of the spatial antennas. The activation of certain degree radiation patterns of either the first beam steering antenna or the second beam steering antenna depends on the memory of the DAQ boards — Beam Manager. When an intruder comes from the cardinal angles of 0◦/ 360◦, 90◦, 180◦, or 270◦, its range and angles’ location will be automatically detected by the first antenna through the output ports of the 1st DAQ: P1.0, P1.1, P1.2, and P1.3. The second antenna is then activated by the output ports of the 2nd DAQ: P2.0 up to P2.3, to adaptively maneuver the beam towards four different ordinal directions of 45◦, 135◦, 225◦, and 315◦

    Issues and Challenges of Video Dissemination in VANET and Routing Protocol: Review

    Get PDF
    New technology called Vehicular Ad-hoc Networks (VANETs), this topology quick changing and frequent disconnection has taken huge attention within last years and makes it complex to design an active routing protocol to routing data among vehicles, Vehicle to Vehicle (V2V) communication and Vehicle to roadside Infrastructure (V2I). Routing protocols which existing for VANETs don’t efficient upon meet all traffic scenarios. Hence, the study of an efficient routing protocol has received significant recognition. Therefore, it is really essential to distinguish the pros and cons of routing protocols that can be done for additional growth or development of any new routing protocol. This study present different aspects of VANET technologies that form a real life vehicular network. More detail for the potential applications and current initiatives for the vehicle networks are covered. In addition, brief discussion of existing related work on video streaming in VANETs which are focused on different protocol stack layers. Finally, provides a comprehensive background on vehicular communication networks. Also, the surveys different routing techniques that have improved video broadcasting functionality to achieve acceptable QoS over VANETs

    Fuzzy-Logic-RSSI based approach for cluster heads selection in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) are defined as networks of nodes that work in a cooperative way in order to sense and control the surrounding environment. Several WSNs algorithms have been proposed by utilizing the Fuzzy Logic technique to select the cluster heads (CHs). Each technique employs a different combination of input parameters such as nodes density, communication cost, and residual energy. CHs determination is critical towards this goal, whereas the combination of input parameters is expected to play an important role. Nevertheless, the received signal strength (RSSI) is one of the main criteria which get little attention from researchers on the topic of CHs selection. In this study, an RSSI based scheme was proposed which utilizes Fuzzy Logic approach in order to be combined with residual energy and centrality of the fuzzy descriptor. In order to evaluate the proposed scheme, the performance Multi-Tier Protocol (MAP) and Stable Election Protocol (SEP) were compared. The simulation results show that the proposed approach has significantly prolonged the survival time of the network against SEP and MAP, while effectively decelerating the dead process of sensor nodes

    An effective transmit packet coding with trust-based relay nodes in VANETs

    Get PDF
    ehicular ad-hoc networks (VANETs) are characterized by limited network resources such as limited bandwidth and battery capacity. Hence, it is necessary that unnecessary use of network resources (such as unnecessary packet transfers) is reduced in such networks so that the available power can be conserved for efficient multicast communications. In this paper, we have presented a Transmit Packet Coding (TPC) Network Coding in VANET to ensure reliable and efficient multicasting. With network coding, the number of transmitted packets over the network can be reduced, ensuring efficient utilization of network devices and resources. Here, the trust-based graph optimization is performed using Cuckoo search algorithm to select the secure relay nodes. The experimental results showed the superiority of the presented approach compared to the existing techniques in terms of throughput, latency, hop delay, packet delivery ratio, network decoder outage probability, and block error rate

    Tin whiskers formation and growth on immersion sn surface finish under external stresses by bending

    Get PDF
    Deposited tin (Sn) layers used as lead-free solderable finish on the semiconductor devices are known to form whiskers. These whiskers are a single crystal of tin that spontaneously grows from the surface of tin within weeks to years. Thus, they can cause shorts and the failure of a whole electronic circuit. In this research, the effect of external stresses applied by bending on the tin whiskers formation and growth was investigated on immersion Sn surface finish. The plating time was 10 minutes to produce 1.4 μm coating thickness on the copper substrate and exposed for 1, 4, and 8 weeks under the environment of 30°C/60% RH for bent and non-bent samples. It was found that the non-bent Sn surface had uniform ts distributed on the entire surface. Unlike the non-bent Sn surface, the surface of bent samples had non-uniform tin whiskers distribution. The tin whiskers formed more and grew longer at the lower stress region of the bent surface as compared to the higher stress region, based on the micrograph observed using the field emission scanning electron microscopy (FESEM)

    The impact of the number of tears in patient-specific Stanford type B aortic dissecting aneurysm: CFD simulation

    Get PDF
    It is believed that the progression of Stanford type B aortic dissection is closely associated with vascular geometry and hemodynamic parameters. The hemodynamic differences owing to the presence of greater than two tears have not been explored. The focus of the present study is to investigate the impact of an additional re-entry tear on the flow, pressure and wall shear stress distribution in the dissected aorta. A 3D aorta model with one entry and one re-entry tear was generated from computed tomography (CT) angiographic images of a patient with Stanford Type B aortic dissection. To investigate the hemodynamic effect of more than two tear locations, an additional circular re-entry tear was added 24mm above the original re-entry tear. Our simulation results showed that the presence of an additional re-entry tear provided an extra return path for blood back to the true lumen during systole, and an extra outflow path into the false lumen during diastole. The presence of this additional path led to a decrease in the false lumen pressure, particularly at the distal region. Meanwhile, the presence of this additional tear causes no significant difference on the time average wall shear stress (TAWSS) distribution except at regions adjacent to re-entry tear 2. Moderate and concentrated TAWSS was observed at the bottom region of this additional tear which may lead to further extension of the tear distally

    Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities and Challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust
    corecore